СТРОИТЕЛЬНЫЕ НАУКИ

Академия, Архитектура и строительство, № 4, стр. 144–151.
Исследования и теория
Научная статья
УДК 628
doi: 10.22337/2017-9038-2022-4-144-151

Максимова Юлия Геннадьевна (Москва). РосКанСтрой (129329, Москва, Игарский проезд, 2). Эл. почта: maksimova@roskapstroy.com

Молина Дарья Евгеньевна (Москва). РосКанСтрой (129329, Москва, Игарский проезд, 2). Эл. почта: molina.de@roskapstroy.com

Шевченко Виктория Петровна (Москва). РосКанСтрой (129329, Москва, Игарский проезд, 2). Эл. почта: shevchenko.vp@roskapstroy.com

Арзуманова Ирина Георгиевна (Москва). РосКанСтрой (129329, Москва, Игарский проезд, 2). Эл. почта: arzumanova.ig@roskapstroy.com

Жильцова Ирина Сергеевна (Москва). РосКанСтрой (129329, Москва, Игарский проезд, 2). Эл. почта:zhiltsova.is@roskapstroy.com


Гогина Елена Сергеевна (Москва). Кандидат технических наук, доцент. Научно-исследовательский институт строительной физики Российской академии архитектуры и строительных наук (127238, Россия, Москва, Локомотивный проезд, 21. НИИФ РААСН); кафедра водоснабжения и водоотведения Национального исследовательского Московского государственного строительного университета (129337, Москва, Ярославское шоссе, 26. НИУ МГСУ). Эл.почта: goginaes@mgsu.ru.

Смирнова Мария Сергеевна (Москва). Научно-исследовательский институт строительной физики Российской академии архитектуры и строительных наук (127238, Россия, Москва, Локомотивный проезд, 21. НИИФ РААСН). Эл.почта: mar-yas888@mail.ru.

Гульшин Игорь Алексеевич (Москва). Кандидат технических наук. Кафедра водоснабжения и водоотведения Национального исследовательского Московского государственного строительного университета (129337, Москва, Ярославское шоссе, 26. НИУ МГСУ). Эл.почта: gulshinia@mgsu.ru.

Зайцева Елена Игоревна (Москва). Кандидат технических наук, доцент. Группа ПОЛИПЛАСТИК (Россия, 119530, Москва, ш. Очаковское, д. 18, стр. 3). Эл.почта: zaytseva@polyplastic.ru.

Maximova Yulia G. (Moscow). RosKapStroy (2, Igarskiy proezd, Moscow, 129329, Russia). E-mail: maksimova@roskapstroy.com.

Molina Darya E. (Moscow). RosKapStroy (2, Igarskiy proezd, Moscow, 129329, Russia). E-mail: molina.de@roskapstroy.com.

Shevchenko Victoria P. (Moscow). RosKapStroy (2, Igarskiy proezd Moscow, 129329, Russia). E-mail: shevchenko.vp@roskapstroy.com.

Arzumanova Irina G. (Moscow). RosKapStroy (2, Igarskiy proezd Moscow, 129329, Russia). E-mail: arzumanova.ig@roskapstroy.com.

Zhilsova Irina S. (Moscow). RosKapStroy (2, Igarskiy proezd Moscow, 129329, Russia). E-mail: zhiltsova.is@roskapstroy.com.

Kalinker Vladimir N. (Moscow). Ministry of Construction, Housing and Communal Services of the Russian Federation (10, building 1 6, Sadovaya-Samotechnaya st., Moscow, 127051, Russia. Ministry of Russia). E-mail: Vladimirkalinkerminstroyrf.gov.ru.

Gogina Elena S. (Moscow). Candidate of Sciences in Engineering. Docent. The Research Institute of Building Physics of the Russian Academy of Architecture and Construction Sciences (21, Lokomotivny proezd Moscow, 127238, Russia. NIIIF RASN); Department of Water Supply and Sanitation of the National Research Moscow State University of Civil Engineering (129337, 26, Yaroslavskoye Shosse, Moscow, Russia. NRU MGSU). E-mail: goginaes@mgsu.ru.
Особенности реконструкции комплекса коммунальной инфраструктуры ансамбля Новодевичьего монастыря

Аннотация. На территории Российской Федерации в настоящее время сохраняется большое количество объектов архитектурного наследия. Большинство объектов не содержит инженерной инфраструктуры, или инженерные системы находятся в неудовлетворительном состоянии, требуют реконструкции и модернизации. Для решения вопросов создания комфортных современных условий в особо охраняемых объектах культурного наследия с полным сохранением внешнего облика и внутреннего культурно-исторического содержания зданий, сооружений и территорий разработаны уникальные современные энергоэффективные технологии по прокладке инженерных систем водоснабжения, водоотведения, тепло-, электроснабжения, связи, ливневой канализации на основе теоретических и масштабных экспериментальных исследований, не имеющих аналогов в РФ и за рубежом. Проведены научные исследования, выполнены научно-технические разработки, обеспечивающие сохранение объектов культурного наследия, учитывающие и предотвращающие возможные риски негативного воздействия на объект культурного наследия от проведения работ.

Предложены эффективные технические решения, позволяющие применить высокотехнологичные материалы и оборудование для прокладки инженерных систем с сохранением требуемого влажностного и температурного режима объекта, а также технологии, обеспечивающие сохранность объекта и культурного слоя в процессе производства работ и последующей эксплуатации.

Ключевые слова: объект культурного наследия, инженерные системы, водоснабжение, водоотведение, ливневая система канализации

Features of the Reconstruction of the Communal Infrastructure Complex of the Ensemble of the Novodevichy Convent

Abstract. A lot of objects of cultural architectural heritage are currently preserved on the territory of the Russian Federation. Most of the facilities do not contain engineering infrastructure or engineering systems are in poor condition and require reconstruction and modernization. To address the issues of creating comfortable modern conditions for the functioning of specially protected cultural heritage sites with full preservation of the external appearance and internal cultural and historical content of buildings, structures and territories, unique modern energy-efficient technologies have been developed for laying engineering systems for water supply, sanitation, heat and power supply, communications, storm sewerage based on theoretical and largescale experimental studies that have no analogues in the Russian Federation and abroad. Scientific research has been carried out, scientific and technical developments have been carried out to ensure the preservation of cultural heritage sites, taking into account and preventing possible risks of a negative impact on a cultural heritage site from ongoing work.

Effective technical solutions have been proposed that allow the use of high-tech materials and equipment for laying engineering systems while maintaining the required humidity and temperature conditions of the object, as well as technologies that ensure the safety of the object and the cultural layer during the work and subsequent operation.

Keywords: cultural heritage sites, engineering systems, water supply, sanitation, storm sewerage

Ансамбль Новодевичьего монастыря является объектом культурного наследия федерального значения в соответствии с постановлением Совета министров РСФСР от 30.08.1960 г. № 1327 «О дальнейшем улучшении дела охраны памятников культуры в РСФСР»1. В 2004 году объект всемирного наследия «Ансамбль Новодевичьего монастыря» был включён в Список всемирного наследия ЮНЕСКО. В 2013 году Указом Президента Российской Федерации ансамбль Новодевичьего монастыря отменён.

к особо ценным объектам культурного наследия народов Российской Федерации. Новодевичий монастырь является выдающимся образцом православной архитектуры и ярким примером прекрасно сохранившегося монастырского комплекса, построенного в стиле «московское барокко» и представляющего архитектуру XVII века. Пользователем объекта является Русская Православная церковь.

Территория, занимаемая ансамблем Новодевичьего монастыря, расположена на второй надмонастырской террасе над левым берегом реки Москвы, в непосредственной близости от него, в петле, образуемой изгибом русла, и в настоящее время отделена от современного русла старинными Большим и Малым Новодевичьими прудами. Южная часть петли ещё в XIX веке представляла собой луговую пойму, вдоль северной границы поймы протекал ручей Вавилон — приток Москвы-реки, от которого в начале XX века сохранилось одноимённое пруд и колодец. К северу рельеф местности повышается, образуя надмонастырские террасы. Древнейшей обжитой частью района считается левый берег северозападной части петли в районе современных Ростовской, Саввинской и Новодевичьей на-бережных, где в X—IX веках проходила дорога из Смоленска в Москву, или Большая Смоленская дорога. Недалеко от устья реки Сетунь дорога поворачивала от поймы на правый берег, где находилась переправа [1].

Природные и географические особенности данной территории, несомненно, были использованы для создания здесь укрепленного западного форпоста Москвы.

Монастырь был основан в 1524—1525 годах. Ещё в 1514 году, когда русские войска после нескольких безуспешных попыток взяли, наконец, город Смоленск, Василий III дал обет поставить в Москве монастырь в ознаменование этого события, однако работы начались только по прошествии десяти лет после долгой войны и наступившего затем перемирия (1522), по которому Смоленск остался за Московским государством.

Монастырь первоначально предназначался для женщин холостых знатных родов. В Новодевичьем монастыре приняли постриг первая русская «самодержавная» царица Ирина Годунова, царевна София (после неудачного заговора против Петра 1), здесь же в Новодевичьем монастыре провела последующие годы жизни первая жена Петра I Евдокия Лопухина. Гробницы Софьи и Евдокии сохранились и находятся в Смоленском соборе монастыря. Наиболее известные названия обители — «Богородица-Смоленский монастырь на Лугу», «что на Дорогомилове», позднее — «на Девичьем поле». В отличие от девичьих монастырей: Вознесенского в Кремле, Рождественского — близ Неглинной, и Алексеевского — на Остожье, известных с XIV века, — его стали называть Ново-Девичьим.

Формирование существующего облика монастыря с доминирующей ролью Смоленского собора в центре ансамбля относится, в основном, к периоду 1682—1690 годов. Остальные доминанты — на основных направлениях: с востока и запада соответственно колокольня и трапезная, с севера на Смоленский собор ориентированы северные ворота с надвратной Преображенской церковью, с юга — южные ворота с Покровской надвратной церковью. Между ними рассредоточены жилые и хозяйственные корпусы.

Новодевичий монастырь представляет собой сложившийся историко-архитектурный комплекс, сформировавшийся в основном в первой четверти XVI — конец XVII века с рядом отдельных объектов XVIII и XIX веков. В центральной части монастыря, кроме охраняемых участков в северной и южной его частях, располагается кладбище середины XVI — XIX веков, так как исторически территория монастыря использовалась как некрополь и представляла собой фактически большее кладбище с расположенными на этой территории каменными часовнями, склепами и надгробными плитами над захоронениями выдающихся представителей российских дворянских родов и известных личностей.

В настоящее время активное использование зданий и сооружений монастыря привело к необходимости реконструкции инженерных систем. Такая работа была начата в 2018 году и успешно окончена в 2020-ом.

Перекладка инженерных сетей на территории Новодевичьего монастыря обусловлена аварийным состоянием существующих сетей, проложенных еще в первой половине XX века хозяйственным способом.

Проектом реконструкции предусмотрено устройство инженерных коммуникаций: хозяйственно-бытовой канализации, дождевой канализации, водоснабжения, теплоснабжения, электроснабжения и сетей связи.

В рамках проведения работ были выполнены комплексные научные обследования инженерных систем параллельно с обследованием строительных конструкций объектов, входящих в состав ансамбля Новодевичьего монастыря [2; 3; 6].

По итогам обследования инженерных систем были сделаны выводы о необходимости реконструкции. Так выявлено, что техническое состояние существующих инженерных сетей преимущественно «ограниченно работоспособное», редко — «работоспособное» (18%). Эксплуатационные характеристики колодцев не соответствуют текущим потребностям. Существующая канализация в большей части находится в аварийном состоянии и подлежит полной замене. Основные выявленные дефекты — коррозионное повреждение трубопроводов, трещины в кирпичной кладке, нарушение герметичности конструкций, заполнение колодцев. Наиболее вероятные причины появления дефектов и повреждений в конструкциях — систематическое замачивание и загрязнение колодцев канализации и водоснабжения вследствие нарушения герметизации, неравномерные просадки конструкций колодцев с образованием трешин в теле стенок колодцев.

1 Указ Президента Российской Федерации от 20.05.2013 г. № 496 ОБ отнесении объекта культурного наследия федерального значения «Ансамбль Новодевичьего монастыря» к особо ценным объектам культурного наследия народов Российской Федерации (http://www.kremlin.ru/acts/bank/37251).
моральный и физический износ сетей водоснабжения и канализации. В результате на основании обследования было рекомендовано провести замену всей старой арматуры (задвижек) на сетях, перекладку старых сетей на трубопроводы ПНД (полуизолированного низкого давления) с учётом построек и плана местности, выполнить реконструкцию (полную замену) колодцев, а при разработке проекта наружных сетей водоснабжения и канализации предусмотреть соответствие характеристик сетей текущим эксплуатационным потребностям [4; 5].

Указанные работы должны быть выполнены относительно следующих объектов Новодевичьего монастыря: «Смоленский собор» (1524–1525) с фресками XVII века; «Трапезная» (1685–1687); «Колокольня» (1686–1688); «Предображенская церковь над северными воротами» (1688); «Покровская церковь над южными воротами» (1625–1667); «Палаты царицы Ирины Годуновой с Амвросиевской церковью» (1580–1590); «Палаты царицы Марии Алексеевны» (1680); «Палаты царицы Евдокии Лопухиной» (1687); «Печерские палаты у Саввинской башни» (XVII–XVIII века); «Казачьи палаты» (XVII–XVIII века); «Палаты у Нарядной башни (стрелечные караулы)» (XVIII век); «Служебная постройка у южной стены» (XVII–XVIII века); «Приют Филатьевского» (1871, художник-архитектор Яковлев); «Больничные палаты» (конец XVII века); «Палаты у Никольской башни (стрелечные караулы)» (XVII век); «Палаты у Чеботарной башни (стрелечные караулы)» (XVII век).

Рис. 1. Здания и сооружения на территории Новодевичьего монастыря (источник: отчет ФАУ Росгипрострой)
век); «Палаты у Сетунской башни (стрелецкие караульни)» (XVII век); «Корпус у Швальной башни» (конец XVII века); «Усыпальница Прохоровых» (1911, архитектор В.А. Покровский); «Сторожка у северных ворот» (XVII век); «Башня Царицынская»; «Башня Никольская»; «Башня Иосафовская»; «Башня Швальная»; «Башня Чеботарная»; «Башня Покровская»; «Башня Предтеченская»; «Башня Сетунская»; «Башня Затрапезная»; «Башня Савинская»; «Башня Напрудная»; «Башня Лопухинская»; «Крепостные стены» (XVI–XVII века); «Усыпальница Волконских» (1830-е).

При этом следует отметить, что в указанных объектах также были выявлены незначительные повреждения, как то: локальные поражения наружной отделки сырцом и грибком, локальные повреждения отмосток. Наиболее вероятными причинами появления дефектов и повреждений являются локальные нарушения работы ливневой канализации, физический износ.

Для проведения реконструкции инженерных систем разработан и реализован проект ФАУ «Росканстрой». В качестве основных принципиальных предложений по прокладке внутрь площадочных инженерных сетей, обеспечивающих сохранение объекта культурного наследия «Ансамбль Новодевичьего монастыря» и минимальное воздействие на отдельные здания, являющиеся памятниками истории и культуры, разработаны следующие проектные решения:

– прокладка хозяйственно-бытовой канализации осуществляется преимущественно по существующей трассе указанных сетей;
– предусматривается использование трассы существующего канала теплоты для совмещённой прокладки основного участка водопровода и теплоснабжения;
– подключение к внутренним сетям отдельных зданий (объектов культурного наследия) сетей водоснабжения и теплоснабжения производится через существующие технологические отверстия и гильзы;
– выпуски хозяйственно-бытовой канализации в соответствии с границами проектирования прокладываются до наружной стены, не подвергая тем самым здания опасному воздействию.

Проектом разработаны оптимальные технологические и конструктивные решения по устройству колодцев, траншей, колодцев и выбору соответствующих методов прокладки инженерных сетей с исключением дополнительного вмещательства в несущие строительные конструкции на стадии проведения работ.

В геоморфологическом отношении трassa расположена в пределах второй надпойменной террасы реки Москвы. Рельеф трассы относительно ровный, характеризуется абсолютными высотными отметками поверхности 12700 – 131,80 м (по Балтийской системе).

Рис. 2. Места подключения инженерных коммуникаций (источник: Отчёт ФАУ «Росканстрой»)
Грунты обладают низкой степенью коррозионной агрессивности по отношению к углеродистой и низколегированной стали. Степень агрессивности сульфатов и хлоридов к бетонным конструкциям и к железобетонным конструкциям оценивается как неагрессивная.

До начала работ по перекладке сетей производят демонтаж существующих сетей и сооружений канализации бытовой, водо- и теплоснабжения методом ручной позеленчатой разборки без повторного использования материалов с применением ручных машин и средств малой механизации. Демонтаж монолитных железобетонных конструкций, разборка тепловых камер производится методом разрушения с применением пневматических рубильщиков молотков. Грунт разрабатывался вручную плоскими не более 10 см с целью спасательных археологических исследований культурного слоя. Отдельно стоит отметить, что все работы по демонтажу существующих инженерных коммуникаций велись совместно с археологическими исследованиями.

В связи с ненормативным расположением перекладываемых сетей до существующих зданий и сооружений, включая коммуникации, проект перекладки сетей разработан с учётом специальных технических условий, содержащих требования по прокладке коммуникаций в фулярах из стальных или полиэтиленовых труб, проведения дополнительных изысканий, по применению организационно-технических мероприятий, исключающих возможности обрушения. Дополнительно следует отметить, что проведение работ по реконструкции инженерных систем велось при соответствующем научно-техническом сопровождении строительства, в том числе с применением геотехнического мониторинга.

Конструктивные и технологические решения перекладываемых сетей

Сети хозяйственно-бытовой канализации устраиваются с использованием методов закрытой прокладки (шnekовое бурение, протяжка новой трубы с разрушением существующей трубы) и открытой прокладки труб, включая открытую прокладку ПЭ труб в стальным фуляре. Технология бестраншейной замены трубопроводов с разрушением существующего трубопровода и последующим втягиванием усиленной полиэтиленовой трубы (метод «труба в трубе с разрушением») основана на использовании гидравлического привода. Особенности этого метода состоят в том, что оборудование приводится в действие гидравлическим способом. Необходимо устройство двух небольших колотов в начале и конце восстанавливаемого участка трубопровода, вся операция проходит под землей (наружный грунт остаётся нетронутым), в зависимости от профиля трубы возможно протягивание как коротких, так и длинных участков труб [7]. Данный метод как один из самых востребованных методов санации трубопроводов позволяет осуществлять прокладку трубопровода вслед за грунтом. Необходимо проведения работ открытым способом. Прохождение трассы хозяйственно-бытовой канализации принято на основании проведенных инженерно-археологических изысканий, а также с учётом значимости объекта проектирования.

Для обеспечения нужд монастыря проектом предусматривается устройство внутриплощадочных водопроводных сетей от городского водопровода [8].

На территории проектируемого объекта предусматривается кольцевой водопровод с установкой пожарных гидрантов в колодцах, что обеспечивает требования по пожарной безопасности.

Прохождение трассы водопровода принято на основании проведённых инженерно-археологических изысканий с учётом значимости объекта проектирования.

Для устройства водопровода в проекте предусматривается установка водомерного узла в объеме центрального теплового пункта (ЦТП), который разместился внутри объекта культурного наследия «Преображенская церковь над северными воротами» (1688) внутри левой боковой арки северных ворот. Проектом предусмотрены ввод инженерных коммуникаций в подготовительные прямые и гильзы и установку оборудования на вновь возводимую внутри помещений профильную фундаментную плиту.

В целом проведения работ по сохранению объекта культурного наследия параллельно с устройством центрального теплового пункта (ЦТП) и водомерного узла внутри левой части северных ворот Преображенской церкви над северными воротами разрабатывался отдельный проект реставрации и приспособления объекта культурного наследия. Все соответствующие решения согласованы с Минкультуры России.

Устройство горячего водоснабжения предусмотрено открытым способом с размещением их в одной траншее вместе с теплосетью на месте существующего канала теплосети, который демонтируется, что позволяет максимально сохранить подземный нерополь, используя существующие технические коридоры коммуникаций [9].

Для таких объектов как Стрелецкая караульная у Нарядной башни, Четвертая, Саввинская и Никольская башни запроектированы и выполнены отдельные инженерные сети теплоснабжения.

Отдельные решения были выполнены по проектированию сетей дождевой канализации.

Предусмотренная проектом сеть дождевой канализации имеет пять бассейнов водоотведения поверхностных стоков и подключается к централизованной системе водоотведения. Технологические решения прокладки дождевой канализации включают закрытую (методами микроинъекции и шnekового бурения) и открытую прокладку труб. Закрытый способ прокладки труб для устройства сетей дождевой канализации методом микроинъекции используется на пяти участках под пряслами монастырских стен: между Швальной и Четвертной башнями; между Сетунской и Затрапезной башнями; между Затрапезной и Саввинской; между Саввинской и Напрудной башнями, между Иосафовской и Швальной башнями (см. рис. 1).
Средняя глубина проходления труб от поверхности земли составляет 3,5 м. Благодаря проведённым расчётом работы по прокладке инженерных коммуникаций закрытым методом микротоннелирования не оказывают негативного влияния на объекты культурного наследия (посты стен), так как расчёты осадки (перемещения) удовлетворяют нормативным значениям.

Участки дождевой канализации прокладываются методом «щекового бурения» на следующих участках: от Казанских палат до прясла между Исакиевской и Швальней башнями, на участке южнее Смоленского собора до прясла между Швальней и Чеботарной башнями и на участке трассы, проходящей вдоль восточной стороны Стрелецкой караульни у Сетунской башни. Средняя глубина проходления труб от поверхности земли составляет 3 м.

Прокладка методом микротоннелирования и щекового бурения осуществляется без снятия грунта по длине трасс (кроме котлованов), тем самым позволяет сохранять существующий рельеф и зелёные насаждения.

Для сбора дождевого стока предусмотрена установка дождеприёмных лотков. Стоики от лотков подклюаются через пескоуловитель к дождеприёмным и смотровым колодцам, далее стоки поступают в наружную дождевую сеть. По- верхностный водоотвод с участка запланирован с выпуском воды по системе водоотводных лотков в проектируемые дождеприёмные решётки. Система водоотводных лотков запроектирована таким образом, чтобы исключить подтопление существующих зданий и сооружений. Водоотводной лоток вокруг объекта культурного наследия «Колокольня» (1686—1688) запроектирован с возможностью выпуска из него воды в проектируемую дождеприёмную решётку и, частично, в систему прилегающих водоотводных лотков с учётом существующего рельефа. В проекте детально проработана вся система водоотводных лотков с указанием уклонов и расстояний между расчётными точками. Подбор необходимых сечений лотков выполнен на основе гидравлического расчёта всей системы водоотводных лотков.

Все работы по реконструкции инженерных систем выполнялись с учётом обеспечения сохранности объектов культурного наследия. В частности, было исключено производство работ ударным, вибрационным или иными способами, могущими на- нести вред (образование или раскрытие трещин, деформации конструкций, крен стен и т.п.) объектам культурного наследия в зоне влияния таких работ, обеспечены природоохранные мероприя- ятия, геотехнический мониторинг. Земляные работы на тер- ритории некрополя, а также в непосредственной близости от объектов культурного наследия производились вручную строго в присутствии и под наблюдением представителей института археологии РАН с выполнением всех их требований [10].

В настоящее время работы по реконструкции инженерных систем окончены, монастырь живёт своей жизнью, радует прихожан, туристов и горожан своим великолепием, а инженерные системы обеспечивают в полной мере их удобство и комфорт.

Список источников

References


8. Toktoshov G.Y. Metodologiya vybora trass dlya prokladki setei i kommunikatsii [Methodology for Choosing Routes for Laying Networks and Communications]. In: Vestnik SibGUTI [The Herald of the Siberian State University of Telecommunications and Informatics], 2022, no. 1 (57), pp. 97–107. (In Russ.)
